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Signals transduced by Notch receptors influence differentiation
and proliferation in a wide variety of cell types. Activation of a
Notch signal by one of several ligands triggers a series of
proteolytic cleavages that release the intracellular region of
Notch from the membrane, allowing it ultimately to translocate
to the nucleus and activate the transcription of downstream
target genes. Recent studies have elucidated the roles of
several key proteins that participate in and modulate these
central events in Notch signal transduction. These advances
offer a variety of potential avenues to manipulate Notch
signaling for therapeutic purposes in the treatment of cancer
and in stem cell maintenance.
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Abbreviations
APP β-amyloid precursor protein
CADASIL cerebral autosomal dominant arteriopathy with subcortical 

infarcts and leukoencephalopathy
DSL Delta, Serrate, LAG-2
ECN extracellular Notch subunit
EGF epidermal growth factor 
HES Hairy/Enhancer of Split
ICN intracellular Notch
Maml1 Mastermind-like protein 1
NTM Notch transmembrane subunit
PS presenilin
T-ALL T-cell acute lymphoblastic leukemias

Introduction
Genes of the Notch receptor family encode a class of evolu-
tionarily conserved transmembrane receptors that transmit
signals affecting development in organisms ranging 
from sea urchins to humans. Evolutionary divergence of 
invertebrates and vertebrates has been accompanied by at
least two rounds of gene duplication: flies possess a single
Notch gene, worms two (glp-1 and lin-12) and mammals 
four (NOTCH1–4).

Because Notch receptors and their ligands are both 
single-pass transmembrane proteins expressed on the cell
surface, they are capable of communicating signals
between adjacent cells. Signals transmitted through Notch
receptors control cell fate decisions in a wide array of
developmental processes from neurogenesis to oogenesis
[1]. Experimental increases or decreases in Notch gene
dosage typically result in an increased abundance of cells
adopting one fate at the expense of a second alternative
fate. In specific contexts, Notch also influences apoptosis,

cellular proliferation, and the organization of tissue boundaries,
activities that further contribute to its broad role in 
morphogenesis (for a review, see [2]).

Here, we will summarize current understanding of the
molecular events that participate in Notch signal transduction,
focusing on potential avenues for therapeutic intervention.
First, we highlight the molecular events required to 
communicate an activating signal via Notch receptors and
describe cellular mechanisms that modulate Notch signaling.
Then, we address the potential for treating certain cancers
by inhibiting Notch signal transduction. Finally, we discuss
the potential for ex vivo tissue engineering by using 
activating ligands to maintain stem cells in culture.

Notch and human disease
Validation of the Notch signaling pathway as a potential
therapeutic target has emerged from the demonstration
that a variety of human diseases result from mutations in
genes encoding Notch receptors or their ligands. These
diseases range from cancer to neurodegenerative disorders,
reflecting the diversity of processes regulated by Notch
signaling. The connection between unrestrained Notch
signaling and malignancy was first recognized when a
recurrent t(7;9)(q34;q34.3) chromosomal translocation,
which creates a truncated, constitutively active variant of
human Notch1, was identified in a subset of human acute
T-cell acute lymphoblastic leukemias (T-ALL) [3]. This
observation led to studies using mouse models which
revealed that Notch1 signaling is essential for T cell devel-
opment [4], that Notch1-mediated signals promote T cell
development at the expense of B cell development [5],
and that excess Notch signaling during development leads
to T cell neoplasia [6,7].

Mutations in human Notch3 lead to the development of
the hereditary disease CADASIL (cerebral autosomal
dominant arteriopathy with subcortical infarcts and
leukoencephalopathy). The vast majority of CADASIL
patients harbor point substitutions of residues within the
cysteine-rich epidermal growth factor (EGF)-like modules
of the extracellular domain, resulting in addition or a 
deletion of a single cysteine residue [8]. Because 
formation of disulfide bonds between conserved pairs of
cysteine residues is probably required for proper folding 
of EGF-like modules, CADASIL may represent a loss 
of function phenotype; on the other hand, accumulation of
the Notch3 extracellular domain in CADASIL patients
also suggests the potential for toxic gain of function [9].

Human diseases have also been attributed to defects in
two of the five known Notch ligands. Alagille’s syndrome,
an autosomal dominant disease, results from frameshift
mutations of the ligand Jagged-1 [10–13] that lead to
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developmental defects in several organ systems including
liver, heart, eye, skeleton and/or kidney. Homozygous
mutations in the ligand Delta-like3 have been linked to a
developmental defect of the axial skeleton called 
spondylocostal dysostosis; a similar phenotype is observed
in pudgy mice, which lack a functional Delta-like3 gene 
product [14•].

Domain organization of Notch receptors
NOTCH genes encode single-pass transmembrane glyco-
protein receptors with a modular organization that assembles

several sets of structural motifs in a highly conserved arrange-
ment (Figure 1). Notch receptors are proteolytically processed
during transport to the cell surface by a furin-like protease at a
site about 70 amino acids external to the transmembrane
domain (S1 in Figure 1) [15], producing an extracellular Notch
(ECN) subunit and a Notch transmembrane (NTM) subunit.
These two subunits, which remain non-covalently associated,
constitute the mature heterodimeric cell-surface receptor [16].

Notch ECN subunits contain 29–36 N-terminal EGF-like
repeats (36 in human Notch1), followed by three tandemly
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Figure 1

Domain organization of Notch receptors. This
cartoon uses human Notch1 as a prototype.
Proteolytic cleavage by furin at site S1
produces two subunits, ECN and NTM, which
remain non-covalently associated at the cell
surface. EGF-like modules 11 and 12,
implicated in ligand binding by Drosophila
Notch, are shaded. Sites S2 and S3 identify
the sites of proteolytic cleavage induced upon
activation by ligand. ICN, intracellular domain
of Notch; NLS, nuclear localization signal;
PEST, proline, glutamate, serine, threonine-
rich sequence; TAD, transactivation domain;
TM, transmembrane.
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Figure 2

Central biochemical events involved in
transducing and modulating Notch signals.
Each step represented in the figure is
discussed in the text.
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repeated LIN-12 modules that precede the S1 site by
about 100 residues. Within the EGF repeat region lie binding
sites for the activating ligands [17]. The LIN-12 modules,
which comprise a unique domain of Notch receptors, 
participate in maintaining Notch in a resting conformation
before ligand-induced activation [18–20]. Indeed, disrup-
tion of the structural integrity of the LIN-12 repeats by
chelation of calcium, which is required for maintaining the
native structure of LIN-12 repeats [21], leads to Notch
activation in cell lines [22]. 

The short extracellular region of the NTM subunit
includes a pair of conserved cysteine residues. The intra-
cellular region of NTM includes a novel domain of about
100 residues termed RAM [23], which is followed by seven
ankyrin/CDC10 repeats [24,25] flanked by two nuclear
localization signals, a less-highly conserved region with
varying transactivating activity, and a C-terminal PEST
sequence (denoting a sequence rich in the amino acids
Pro, Glu, Ser and Thr).

Central events of Notch signaling
The central events that occur during Notch signal 
transduction are highly conserved from flies to humans
(Figure 2). Activation by ligand triggers a series of 
proteo-lytic cleavages of NTM that release intracellular
Notch (ICN) from the membrane. ICN then translocates
to the cell nucleus, where it binds to a highly conserved 
downstream transcription factor, called CSL in mammals
(suppressor of hairless in flies). Binding of ICN to CSL is
accompanied by the activation of transcription of target
genes, which include the Hairy/Enhancer of Split (HES)
family of helix–loop–helix transcription factors. The 
molecular events that carry out each of these core steps in
Notch signaling, with recent advances highlighted, are
summarized below.

Five Notch ligands have now been identified in humans:
Jagged1, Jagged2, Delta-like1, Delta-like3 [14•,26] and
Delta-like4 [27–29]. Each of the ligands is a single-pass
transmembrane protein with a conserved N-terminal
Delta, Serrate, LAG-2 (DSL) motif essential for binding 
to Notch. A series of EGF-like modules C-terminal to 
the DSL motif precede the membrane-spanning segment; 
in contrast to Notch receptors, the ligands possess short 
cytoplasmic tails of 70–215 amino acids at their C-termini.
Because both the four Notch receptors and their five 
ligands are expressed in a wide range of tissue types in
mammals, cell fate decisions may integrate signals based
on the temporal and spatial patterns of expression of 
different ligand–receptor pairs.

Components of the endocytic machinery are essential for
transduction of a Notch signal once ligand binding has
occurred [30,31]. In flies, ligand endocytosis promotes 
dissociation of the Notch heterodimer with accompanying
trans-endocytosis of ECN into the delta-expressing cells
[32]. Rubin’s group has shown that the activity of

Neuralized, a ubiquitin E3 ligase [33•], is required both for
endocytosis of Delta, and for its subsequent degradation
[34••]. Although the cell-autonomy of Neuralized function
can vary in different systems, homozygous loss-of-function
of Neuralized in flies always leads to loss of Notch 
signaling [35–38].

Upon perturbation of the interface between the two non-
covalently associated Notch subunits by events associated
with ligand binding, the NTM subunit becomes sensitive
to at least two sequential proteolytic cleavages (at sites S2
and S3; Figure 1) that release its intracellular portion
(ICN) from the membrane. This ‘regulated intramem-
brane proteolysis’ (see [39••] for a review) of Notch is
highly analogous to the processing of β-amyloid precursor
protein (APP). Ligand-dependent cleavage of human
Notch1 at site S2 is probably mediated by a member of 
the disintegrin and metalloprotease (ADAM) family 
of proteases, either TNF-α converting enzyme (TACE) or
Kuzbanian (Kuz). In vitro, TACE can carry out proteolysis
at the S2 site of hNotch1 [40,41]; alternatively, Kuz has
been genetically and biochemically linked to activation of
Drosophila Notch [42–44].

After cleavage has occurred at site S2, presenilin(s) (PS)
and its cofactor(s) catalyse subsequent proteolysis within
the transmembrane region at the S3 site. Membrane-
bound forms of Notch require PS for nuclear localization
and downstream signaling, whereas free intracellular
Notch does not [45–47]. PSs are likely to be novel aspartyl
proteases, as two well-conserved aspartate residues are
required for function [48]. In addition, transition state 
analogues of aspartyl proteases inhibit proteolytic activity
[49,50], and photoaffinity versions of two specific 
compounds selectively modify PS1 [51••]. Loss of function
of the novel protein nicastrin shows loss-of-function
Notch-like phenotypes in worms [52••,53,54] and flies
[55,56], and membrane-tethered Notch, PSs, and nicastrin 
participate in a multiprotein complex [57•]. These 
findings support a model in which PSs and nicastrin 
cooperate to establish the catalytic activity and substrate
specificity required for proteolysis of Notch and other
cleavage substrates.

When ICN is released from the membrane, it translocates
to the nucleus to activate expression of downstream genes
[58–60], which include the HES family of basic
helix–loop–helix transcription factors [61–63]. The primary
nuclear target of ICN is a ubiquitous DNA-binding tran-
scription factor called CSL [61,64,65]. ICN uses both its
RAM and ankyrin repeat regions to bind CSL, transform-
ing CSL from a repressor into an activator. Activation by
ICN appears to be potentiated by recruitment of co-acti-
vators, such as Mastermind-like protein 1 (Maml1), which
forms a stable multiprotein–DNA complex with ICNs
from hNotch1-4 and CSL both in vitro and in cells [66•]
(see also Update). Certain histone acetylases (PCAF and
GCN5) also associate with ICN [67].
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Modulation of Notch signaling
Known modulators of Notch signaling act by regulating 
ligand responsiveness, controlling ICN turnover, and by other
less well-characterized mechanisms. Current evidence con-
vincingly argues that controlled post-translational variation
of the glycosylation patterns of Notch ECN subunits by
Fringe glycosyltransferases can alter the responsiveness of
Notch receptors to different ligands, either by directly
masking important ligand contacts, or by interfering with
steps in signal transduction following ligand binding.
Glycosylation of the ECN subunit of hNotch1 with an
uncommon tetrasaccharide, Sia-α2,3-Gal-β1,4-GlcNAc-
β1,3-Fuc-α1-O-Ser/Thr [68], takes place during maturation
in the Golgi apparatus [69••,70•]. A family of glycosyltrans-
ferases, which includes Drosophila Fringe [71] and its three
orthologues in mammals, called Radical, Manic and
Lunatic Fringe [72,73], catalyse transfer of the second
sugar, N-acetylglucosamine, onto fucose [69••,70•]. Many 
of the potential O-fucose modification sites fall within
Notch EGF repeats affected by Abruptex mutations, which 
perturb Notch signaling in flies [74,75], and variation in the
extent and pattern of Notch glycosylation by Fringe in flies
differentially influence the ability of Notch to respond to
signals from Serrate and Delta [71]. The rates with which
different Fringe enzymes modify Notch receptors vary
[69••], suggesting the possibility that each Fringe protein
might preferentially glycosylate different sites on the four
receptors [76]. Although the consequences of Fringe-
mediated glycosylation upon ligand sensitivity is complex
in mammals, and may differ depending on which Notch
receptor (N1–N4) is modified [77], glycosylation by Fringe
proteins also appears to render mammalian Notch receptors
resistant to certain ligands while maintaining competence
for activation by others.

Rapid degradation of ICN after nuclear translocation atten-
uates Notch signaling, and may explain why detection of
endogenous forms of activated Notch in the nucleus has
remained so elusive [58,60]. Recent studies have revealed
that ubiquitination of ICN by human Sel-10 [78], an F-box
protein that forms an SCF-like E3 ubiquitin ligase, can 
target ICN for degradation [79•]. Phosphorylation of ICN,
which has been consistently observed [80–83], appears to
be necessary for the destruction of ICN [84]. The functional
connection between phosphorylation and Notch signaling
activity has been demonstrated in a myeloid differentiation
assay using 32D cells, which exhibit an increased Notch2
signal and a block in differentiation upon inhibition of
phosphorylation [85].

Although CSL is clearly a primary downstream target of 
activated Notch, some studies suggest that CSL-indepen-
dent events also result from activation of Notch (e.g. [86]).
Although the molecular mechanisms underlying CSL-
independent signaling are not yet clear, proteins reported to
associate with the ankyrin repeats of ICN include Deltex
[87], Numb [88,89], and NFκB [90,91], any or all of which
may contribute to CSL-independent Notch signaling.

Notch as a therapeutic target
Inhibition of signaling
Although the causative role of activated Notch in human 
carcinogenesis has only been demonstrated explicitly for
hNotch1 in some cases of T-ALL, Notch receptors are
expressed in a wide range of cancers and in tumour-derived
cell lines (see also Update). For example, Notch is highly
expressed in neoplastic lesions in human cervix [92] as well
as in human renal cell carcinoma cells [93]. Multiple lines of
investigation in animal models have reinforced the idea that
increased Notch signaling can be oncogenic. Enforced
expression of ICN2 causes T lymphoblastic lymphoma in
the mouse, transgenic mice expressing lck promoter-drivien
ICN3 develop T-cell lymphomas [94], and ICN4 promotes
the development of murine breast carcinomas [95].
Moreover, weakly activated Notch alleles (stabilized through
deletion of the PEST sequences) can act synergistically with
other oncogenes such as myc and E2A-Pbx1 to accelerate
and exacerbate lymphomagenesis [96•,97•]. Enforced
expression of the ligand Delta-like4 has also been linked 
to murine lymphomagenesis [98]. Furthermore, ICN1 and
ICN2 transform baby hamster kidney cells in vitro [99].

Even with a normal complement of Notch signaling com-
ponents, certain cancers may exploit downstream targets of
activated Notch to maintain the transformed phenotype.
Epstein-Barr virus, which commonly drives B-cell lym-
phomas in immunocompromised individuals, produces a
protein called Epstein-Barr nuclear antigen-2, which 
mimics ICN by binding to CSL and activating transcrip-
tion to send a Notch-like signal downstream [100,101].
More generally, just as Notch signaling has been implicated
in the self-renewal of normal stem cells, it is plausible 
that the self-renewal of clonogenic neoplastic stem 
cells will also require some level of Notch activation. 
If so, interruption of Notch signaling might limit the 
proliferation capacity of neoplasms, through either 
differentiation-induced cell-cycle arrest and/or programmed
cell death.

Notch signaling can be inhibited in principle by blocking
ligand binding, preventing ligand endocytosis, inhibiting
regulated intramembranous proteolysis, or by interfering
directly with the action of ICN. Although Notch ECN 
subunits contain 29–36 EGF-like repeats, recombinant
fragments containing as few as two of these modules can
associate with Notch ligands and act as competitive
inhibitors for binding to full-length Notch [102].
Inactivation of most forms of membrane-tethered Notch
might also be achieved by inhibition of either the S2 
metalloproteases, which have a broad range of cellular 
targets, or the S3 nicastrin/PS protease complex, which has
only been implicated in cleavage of three different classes
of substrates. Because certain mutations [103,104] or
inhibitors [105••] have been found to differentially affect
APP processing and Notch cleavage, it appears reasonable
to search for γ-secretase inhibitors that selectively prevent
cleavage of membrane-tethered Notch.
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Direct inhibition of ICN activity may be the most promising
approach, however, because naturally occurring constitu-
tively active truncations of Notch result in free, active
ICN. Such a strategy would require inhibiting the forma-
tion of CSL–ICN complexes or interference with the
recruitment of co-activators to the CSL–ICN complex to
prevent expression of downstream target genes. The
Maml1-binding site on ICN appears to be essential for
transcriptional activation, because truncated forms of
Maml1 that retain affinity for ICN but lack the activator
domain act as dominant-negative proteins in ICN-depen-
dent CSL-responsive reporter assays [66•,106]. A more
detailed knowledge of the biochemistry and structure of
ICN-dependent transcriptional activation complexes
should facilitate a search for small molecules that interfere
with their assembly (see also Update).

Activation of signaling
Because Notch receptors participate in the decision
between self-renewal and differentiation for many different
types of cells, the potential to maintain stem cells in 
culture using activated Notch raises various opportunities
for development of therapeutics in stem cell biology and
tissue engineering. Strategies for activation or potentiation
of a Notch signal have included growth of primary cells in
culture in the presence of soluble ligand [107•,108] or with
ligand conjugated to a solid support, which may better
mimic the in vivo situation in which membrane-bound 
ligands activate Notch proteins [109–111]. Other pharma-
cologic approaches that might increase Notch activity
would include (i) inhibition of Fringe (or other enzymes
involved in Notch glycosylation [112–114]), thereby 
modulating the responsiveness of Notch to its ligands, (ii)
inhibiting Notch degradation by preventing phosphoryla-
tion and subsequent Sel-10-dependent ubiquitination, or
(iii) de-repressing or directly activating transcription of
CSL-dependent target genes.

The strategy of harnessing Notch activation for the 
purpose of stem-cell self-renewal in culture has advanced
most rapidly with hematopoetic stem cells. Jagged-1
expressed on stromal cells seems to activate Notch on
haematopoietic stem cells in vivo [108,115], with addition
of certain growth factors also necessary to induce prolifera-
tion [116]. Although the use of Notch signaling for stem
cell maintenance and tissue engineering may be practically
difficult, because each cell type may require unique 
culture conditions containing additives such as appropriate
cytokines and growth factors, haematopoietic stem cells
have been successfully immortalized by constitutive 
activation of Notch signaling [117••]. 

Conclusions
Notch signaling controls differentiation and proliferation
in a variety of different cellular contexts. Whereas inacti-
vation of Notch signals may block cell proliferation in
certain tumors, enhanced activation may help maintain
stem cell viability and pluripotency. Recent advances have

clarified many of the molecular events involved in Notch
signaling, yielding a range of potential targets for both 
inhibition and activation of Notch, each of which may have
therapeutic benefit. These new insights provide opportu-
nities for manipulation of Notch signaling in vivo and
ex vivo, possibly allowing for rational control of stem cell
proliferation and differentiation. Chemical screens for
Notch signal modifiers should produce lead compounds of
great interest to basic scientists and clinicians alike.

Update
Recent evidence from two groups lends additional strong
support to the physiologic and pathophysiologic relevance
of Maml1 recruitment to complexes containing CSL and
ICN on DNA. First, Capobianco’s group identified high
molecular weight (>1 MDa) nuclear complexes containing
ICN1, Maml1 and CSL in a human cell line derived from
a T-ALL associated with a chromosomal translocation
involving NOTCH1. Furthermore, they also showed that
the ability of ICN1 and ICN2 to transform RKE cells 
correlates tightly with entry into complexes with CSL and
Maml1 [118].  Secondly, the groups of Kintner and Jones
addressed one potential mechanism of transcriptional 
activation by Maml1. In a purified system, they showed
that Maml1 recruits the transcriptional co-activator p300 to
ICN1/CSL complexes, and that this activity is essential for
CSL-dependent transcription from chromatinized templates
[119]. Recent work has also shown that Notch1 is highly
expressed in the tumor cells of Hodgkin and anaplastic
large cell lymphoma, and that the Notch ligand Jagged-1
drives the proliferation of cell lines derived from these
tumors in vitro [120]. 
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